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In winter 2016-17, highly pathogenic avian influenza
A(H5N8) and A(H5NS) viruses of clade 2.3.4.4 were identi-
fied in wild and domestic birds in Italy. We report the oc-
currence of multiple introductions and describe the identifi-
cation in Europe of 2 novel genotypes, generated through
multiple reassortment events.

In spring 2016, highly pathogenic avian influenza (HPAI)
outbreaks caused by the HSN8 subtype of clade 2.3.4.4
(group B) were reported in migratory wild birds in Qinghai
Lake, China (/), and in the salt lake system of Uvs Nuur
on the Russian Federation—-Mongolia border (2). Since
then, HPAI A(H5NS8) viruses have been detected in several
countries in Asia, Europe, and Africa. In Europe, the virus
was detected for the first time in October 2016 in Hungary
(3). Here, we describe the occurrence of multiple introduc-
tions of reassortant HPAI A(H5N8) and A(H5NS) viruses
in Italy, in both wild and domestic birds.

The Study

During December 2016—January 2017, a Eurasian wigeon
(Anas penelope) and a gadwall (4nas strepera) found dead
at Grado Lagoon in northeastern Italy tested positive for
HPAI A(H5NS). A second wigeon tested positive for HPAI
A(H5NS). Since then, additional HPAI A(H5NS) cases
were observed in a common shelduck (7adorna tadorna)
and in a mute swan (Cygnus olor) and in birds on 6 com-
mercial turkey farms, 1 layer farm, and 3 backyard flocks
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(Table 1; Figure 1). All of the cases in domestic poultry
farms occurred in areas in close proximity to wetlands that
are listed as important resting sites for migratory water-
fowl. The onset of clinical signs in all the affected poultry
species was generally associated with depression, reluc-
tance to move, and a drop in feed consumption. The clini-
cal condition often evolved into a more severe respiratory
and nervous syndrome associated with an increased mortal-
ity rate (average mortality rate is 1.62% [95% CI 1.10%—
2.14%]). Depopulation measures on the infected farms and
7 neighboring poultry premises considered at risk involved
~510,000 birds.

The genomes of 10 positive samples collected from
wild (n = 4) and domestic (n = 6) birds were fully se-
quenced (online Technical Appendix 1, https://wwwnc.
cdc.gov/ElD/article/23/9/17-0539-Techappl.pdf). Phylo-
genetic analysis of the hemagglutinin (HA) gene showed
that the HPAT A(H5NS) and A(H5NS) viruses clustered
within the 2.3.4.4 clade, group B (Figure 1). However, the
characterization of the complete genome (online Technical
Appendix 1 Figures 1-8) revealed that these viruses belong
to 4 distinct genotypes, which had very likely originated
from multiple reassortment events.

Phylogenetic analyses indicated that the HPAT H5NS
viruses had been generated through intersubtype reassort-
ment events between the HSN8 viruses from Asia (HSN8-
Gs/Qinghai/2016-like) and the low pathogenicity avian in-
fluenza (LPAI) viruses of the Eurasian lineage (Figure 2).
The A(H5N8) viruses from Asia were the source of the HA,
polymerase acidic, matrix, and nonstructural protein genes.
HPAI A(H5NS) viruses with similar HA and neuramini-
dase genes were identified in Croatia and Czech Republic
in 2016—17. The time to the most recent common ancestor
(tMRCA) estimated by pooling the information across all
the gene segments in a hierarchical model (online Techni-
cal Appendix 1) suggested that a virus with this gene con-
stellation emerged during October—December 2016 (Table
2; online Technical Appendix 1 Table 1).

Among the 8 HPAI A(H5NS) viruses in Italy in-
vestigated during this study, 5 were collected from wild
and domestic birds in the Veneto region. In all the phy-
logenetic trees, these viruses clustered within the main
European A(HS5NS) group (A/wild duck/Poland/82A/
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Table 1. Epidemiologic information for highly pathogenic avian influenza A(H5N5) and A(H5N8) viruses isolated from birds in Italy,

2016-17
Collection EpiFlu
Isolate Type date Region Location Site type accession no.*
Alwigeon/Italy/16VIR9616-3/2016 H5N5 2016 Dec 29  Friuli Venezia Grado Natural park  EP1888600-01,
Giulia (Gorizia) EPI1954800-05
Alwigeon/Italy/17VIR57-3/2017 H5N8 2017 Jan 03  Friuli Venezia Grado Natural park EPI888085-92
Giulia (Gorizia)
Al/gadwall/ltaly/17VIR133-2/2017 H5N5 2017 Jan 10 Friuli Venezia Grado Natural park EPI1954616-23
Giulia (Gorizia)
Alswan/ltaly/17VIR537-2/2017 H5N8 2017 Jan 19 Friuli Venezia Aquileia Natural park EPI1954552-59
Giulia (Udine)
Alturkey/Italy/17VIR538-1/2017 H5N8 2017 Jan 20 Veneto Mira Fattening EPI1954560-67
(Venice) turkeys farm
Alturkey/Italy/17VIR576-11/2017 H5N8 2017 Jan 23 Veneto Piove di Sacco Fattening EPI1954568-75
(Padua) turkeys farm
Alchicken/Italy/17VIR653-12/2017 H5N8 2017 Jan 25 Veneto Porto Viro Laying hens EPI1954576-83
(Rovigo) farm
Alturkey/ltaly/17VIR973-2/2017 H5N8 2017 Feb 01 Emilia Romagna Sorbolo Fattening EP1954584-91
(Parma) turkeys farm
Alturkey/Italy/17VIR1338-3/2017 H5N8 2017 Feb 14 Lombardy Monzambano Fattening EPI1954592-99
(Mantova) turkeys farm
Alturkey/Italy/17VIR1452-22/2017 H5N8 2017 Feb 16 Veneto Gazzo Veronese Fattening EPI1954600-07
(Verona) turkeys farm

*GISAID EpiFlu database (http://platform.gisaid.org).

2016-like) (Figure 2), previously described by Pohlmann
et al. (4). The tMRCA for this group was May—June 2016
in the hierarchical gene segment model (Table 2; online
Technical Appendix 1 Table 1). The first HPAT A(H5NS)
virus detected in a turkey farm in the Veneto region dis-
played the gene composition of a virus isolated in Octo-
ber 2016 from a painted stork in an Indian zoo (5), which
had not previously been reported in Europe (Figure 2).
The tMRCA of this Indian—Italian group is July—October
2016, according to the hierarchical gene segment model
(Table 2; online Technical Appendix 1 Table 1). The 2
outbreaks reported in 2 commercial turkey farms in the
Emilia-Romagna and Lombardy regions were caused by
HPAI A(H5NS8) reassortant viruses containing the poly-
merase basic protein 2 and nucleoprotein genes of LPAI
viruses of the Eurasian lineage and the remaining genes
from the H5N8-Gs/Qinghai/2016-like genotype (Figure
2). Viruses with a similar gene pool were identified in
Croatia and France. Estimation of the tMRCA by the hier-
archical gene segment model indicated that this genotype
might have emerged during June—August 2016 (Table 2;
online Technical Appendix 1 Table 1).

Analyses of the phylogenetic topologies revealed
that most of the sequences found in Italy were dispersed
throughout the trees, indicating the occurrence of sever-
al independent introductions of the A(H5NS) virus into
poultry farms from wild birds (online Technical Appen-
dix 1 Figures 1-8). These results were confirmed by our
median-joining network analyses for the HA gene (online
Technical Appendix 1 Figure 9), which showed that the
ancestral sequences of the samples from Italy represent vi-
ruses collected in other countries. In most cases >1 median
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vector, representing the lost ancestral sequences, sepa-
rated these viruses from the hypothetical progenitor. The
only exception was for A/turkey/Italy/17VIR576-11/2017
and A/turkey/Italy/17VIR1452-22/2017, which proved to
be almost identical for all the genes (similarity of 99.9%—
100%), although they were collected 24 days apart in 2
turkey flocks located at a distance of #90 km from one
another and no evident contacts were observed between
them. However, because the 2 outbreaks had occurred in
2 farms operated by the same company, an exchange of
virus cannot be ruled out.

Intravenous pathogenicity indexes obtained for 8 rep-
resentative A(HSNS) and A(HSNS) isolates ranged from
2.85-3, comparable to an index of 2.93 for 2016 A(H5NS)
viruses from Germany and 2.75-2.84 for 2016 A(H5NS)
viruses from Russia (2,4). These data confirm that both
of the A(H5NS8) and A(H5NS) viruses from Italy, which
shared the same HA cleavage site (PLREKRRKR), are
highly pathogenic for poultry.

Conclusions

Since its emergence in China in 2013, the HPAI H5 of
clade 2.3.4.4 has evolved in different genetic groups,
namely A to D (6). Here, we describe the introduc-
tions of 4 different H5 viral genotypes of clade 2.3.4.4
group B in northern Italy. As previously observed for
the 2014—15 A(H5N8) epidemic wave (7), our results
confirm that these strains have a high propensity to reas-
sort with co-circulating LPAI and HPAI viruses, causing
the generation of several subtypes and genotypes with
unique gene constellations. Unfortunately, the lack of se-
quences of the potential progenitors, exemplified by the
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Figure 1. Highly pathogenic
avian influenza A(H5N8)
and A(H5NS5) in birds, Italy,
2016-17). A) Geographic
distribution of cases in
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Figure 2. Probable genesis
of highly pathogenic avian
influenza A(H5N8) and
A(H5N5) reassortant viruses
identified in Italy, 2016-17
(gray box). Virus particles
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long branches observed in particular in the polymerase the similarity to viruses circulating in Europe and India,
basic protein 2, polymerase acidic, and nucleoprotein and the close proximity of the infected poultry farms to
phylogenies, makes it difficult to determine when and wetlands all suggest that wild birds did play a major role
where these genotypes emerged. The genetic variabil- in the multiple and independent introductions of the vi-
ity observed in the viruses identified in domestic birds, rus into poultry holdings.

Table 2. tMRCA for the 4 avian influenza A(H5N5) and A(H5N8) virus genotypes identified in Italy, 2016-17*

tMRCA
Genotype Mean 95% HPD
H5N5 November 2016 October—December 2016
H5N8 A/wild duck/Poland/82A/2016-like May 2016 May—June 2016
H5N8 A/painted stork/India/10CA03/2016-like August 2016 July—October 2016
H5N8 A/mute swan/Croatia/70/2016-like July 2016 June—August 2016

*tMRCAs estimated for each gene segments are reported in online Technical Appendix 1 Table 1 (https://wwwnc.cdc.gov/EID/article/23/9/17-0539-
Techapp1.pdf). HPD, highest posterior density; tMRCA, time to most recent common ancestor.
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Our study highlights the importance of generating
complete viral genome sequences in a timely fashion,
which may help to monitor the viral spread and define
appropriate disease control strategies. This, coupled with
intensified wild bird surveillance on wetlands of ecolog-
ic importance for avian influenza viruses, can improve
our understanding of the virus dissemination routes and
support early detection of viruses highly pathogenic
to poultry or believed to be of immediate concern to
human health.
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The novel Eurasian lineage clade 2.3.4.4 highly pathogenic avian influenza (HPAI) A(H5N8) virus spread rapidly and globally
during 2014, substantially affecting poultry populations. The first outbreaks were reported during January 2014 in chickens and do-
mestic ducks in South Korea and subsequently in China and Japan, reaching Germany, the Netherlands, and the United Kingdom
by November 2014 and ltaly in early December 2014. Also in November 2014, a novel HPAI H5N2 virus was reported in outbreaks
on chicken and turkey farms in Fraser Valley, British Columbia, Canada. This H5N2 influenza virus is a reassortant that contains the
Eurasian clade 2.3.4.4 H5 plus 4 other Eurasian genes and 3 North American wild bird lineage genes. Taiwan has recently reported
novel reassortants of the H5 clade 2.3.4.4 with other Eurasian viruses (H5N2, H5N3).

The appearance of highly similar Eurasian H5N8 viruses in Asia, Europe, and now the United States suggests that this novel
reassortant may be well adapted to certain waterfowl species, enabling it to survive long migrations. These appearances also
represent a major change in Eurasian H5 virus circulation. After the reported spread of
HPAI H5NT1 virus in Asia, a large, interagency avian influenza virus (AlV) surveillance
effort was implemented throughout the United States during April 2006-March 2011.
Of nearly 500,000 wild bird samples tested, none harbored Eurasian subtype H5 AlV.
The overall prevalence of AIV was =11%, and most viruses (86%) were detected in
dabbling ducks (family Anatidae). Although H5N8 subtype viruses have been detected
previously in the United States, all have been low pathogenicity AIV of North American
wild bird lineage.

Visit our website to listen:

EMERGING

http://www2c.cdc.gov/podcasts/player.asp?f=8636076 |NFECTIOUS DISEASES

Emerging Infectious Diseases *« www.cdc.gov/eid * Vol. 23, No. 9, September 2017 1547




Article DOI: https://doi.org/10.3201/eid2309.170539

Genetic Diversity of Highly Pathogenic
Avian Influenza A(HS5N8/H5N5) Viruses in
Italy, 201617

Technical Appendix 1

Materials and Methods

Genome sequencing

Total RNA was purified from 8 HPAI H5N8 and 2 HPAI H5N5 positive clinical samples
using the Nucleospin RNA kit (Macherey—Nagel, Duren, Germany). Complete influenza A virus
genomes were amplified with the SuperScript 111 One-Step RT-PCR system with Platinum Taq
High Fidelity (Invitrogen, Carlsbad, CA) using one pair of primers complementary to the
conserved elements of the influenza A virus promoter as described in (1). Sequencing libraries
were obtained using Nextera DNA XT Sample preparation kit (Illumina) following the
manufacturer’s instructions and quantified using the Qubit dsDNA High Sensitivity kit
(Invitrogen, USA). The average fragment length was determined using the Agilent High
Sensitivity Bioanalyzer Kit. The indexed libraries were pooled in equimolar concentrations and
sequenced in multiplex for 250 bp paired-end on Illumina MiSeq, according to the

manufacturer’s instructions.

High-throughput sequencing data analysis

Illumina reads quality was assessed using FastQC v0.11.2. Raw data were filtered by
removing: i) reads with more than 10% of undetermined (“N”) bases; ii) reads with more than
100 bases with Q score below 7; iii) duplicated paired-end reads. Remaining reads were clipped
from lllumina Nextera XT adaptors with scythe v0.991 (https://github.com/vsbuffalo/scythe) and
trimmed with sickle v1.33 (https://github.com/najoshi/sickle). Reads shorter than 80 bases or
unpaired after previous filters were discarded. High-quality reads were aligned against a
reference genome using BWA v0.7.12 (2). Alignments were processed with Picard-tools v2.1.0

(http://picard.sourceforge.net) and GATK v3.5 (3-5) to correct potential errors, realign reads
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around indels, and recalibrate base quality. Single Nucleotide Polymorphisms (SNPs) were

called using LoFreq v2.1.2 (6) and the outputs were used to generate the consensus sequences.

Phylogenetic analyses

Consensus sequences of the complete genome of the 10 samples were aligned using
MAFFT v. Seven (7) and compared with the most related sequences available in GISAID
(accessed February 28, 2017). Maximum likelihood (ML) phylogenetic trees were obtained for
each gene segment using the best-fit general time-reversible (GTR) model of nucleotide
substitution with gamma-distributed rate variation among sites (with 4 rate categories, I'4) and a
heuristic SPR branch-swapping search (8) available in the PhyML program version 3.1. To
assess the robustness of individual nodes of the phylogeny, 100 bootstrap replicates were
performed. Phylogenetic trees were visualized with the program FigTree v1.4.2

(http://tree.bio.ed.ac.uk/software/figtree/).

The HA gene segment of the HPAI H5N8 and H5N5 influenza viruses collected in
Eurasia in 2016-2017 was aligned and used to construct a phylogenetic network using the
Median Joining method implemented in the program NETWORK 4.5 (http://www.fluxus-
engineering.com) (9). This method uses a parsimony approach to reconstruct the relationships
between highly similar sequences, and allows the creation of “median vectors,” which represent
unsampled sequences that are used to connect the existing genotypes in the most parsimonious
way. The parameter epsilon was set to 0.

Estimation of the Time to the Most Recent Common Ancestor (tMRCA)

We estimated the tMRCAs of the HPAI H5N8 and H5N5 genotypes identified in Italy by
applying a Bayesian hierarchical model to all 8 gene segments using the BEAST software (10).
To model the substitution process in each gene segment, we employed an HKY85 + I's model
with two partitions (1st + 2nd positions versus 3rd position), base frequencies and I'-rate
heterogeneity unlinked across all codon positions (the SRDO06 substitution model). We specified
an independent uncorrelated lognormal relaxed clock and Bayesian skyride tree prior for each
segment. To allow pooling of information across segments in estimating the tMRCAs of the
HPAI H5N8 and H5N5 genotypes, we specified a hierarchical prior distribution over each of the
corresponding tMRCAs of the genotypes (11). Specifically, we assume that the log of the

tMRCASs are drawn from a normal distribution with a mean and a variance that is also unknown

Page 2 of 13



and simultaneously estimated along with all the sequence evolution parameters. We used
Markov chain Monte Carlo (MCMC) to draw inference under this model and used chain lengths
of 50 million iterations to achieve convergence as assessed using Tracer v1.6
(http://beast.bio.ed.ac.uk/Tracer). Maximum Clade Credibility (MCC) phylogenetic trees were
summarized from the posterior distribution of trees using TreeAnnotator v1.6.1 (10) after the
removal of an appropriate burn-in (10% of the samples). The MCC trees were visualized using

the program FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).
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Technical Appendix Table 1. Time to the most recent ancestor (tMRCA) for each gene segment of the 4 genotypes identified in

Italy
Genotype
H5n8 A/Wild H5n8 A/Painted H5n8 A/Mute
H5n5 Duck/Poland/82a/16-Like Stork/India/10ca03/16-Like Swan/Croatia/70/16-Like

Gene Mean 95% Hpd Mean 95% Hpd Mean 95% Hpd Mean 95% Hpd
PB2 Nov 2016  Oct-Dec 2016 May 2016 May—Jun 2016 Sep 2016  Jul-Oct 2016  Jul 2016  Jun—Sep 2016
PB1 Nov 2016  Oct-Dec 2016 May 2016 May—Jun 2016 Aug 2016  Jul-Oct 2016  Jul 2016  Jun-Aug 2016
PA Nov 2016  Sep-Dec 2016 May 2016 May—Jun 2016 Aug 2016  Jul-Oct 2016  Jul 2016  Jun—Aug 2016
HA Nov 2016  Oct—Dec 2016 Jun 2016 May-Jun 2016 Aug 2016 Jul-Sep 2016 Jul 2016  Jun-Sep 2016
NP Nov 2016  Oct-Dec 2016  May 2016 May—Jun 2016 Aug 2016  Jul-Oct 2016  Jul 2016  Jun—Aug 2016
NA Nov 2016  Sep—-Dec 2016 Jun 2016 May—Jun 2016 Aug 2016 Jul-Oct2016 Jul 2016  Jun—Aug 2016
M Nov 2016  Oct-Dec 2016  Jun 2016 May—Jun 2016 Sep 2016 Aug—Oct 2016  Jul 2016  Jun—Aug 2016
NS Nov 2016  Oct—Dec 2016 Jun 2016 May-Jun 2016  Sep 2016  Aug—Oct 2016  Jul 2016  Jun-Aug 2016
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Technical Appendix Figure 1. Maximum Likelihood phylogenetic tree of the NA gene of the N8 subtype.
HPAI H5N8 viruses were collected in Italy from wild (red) and domestic (blue) birds. Bootstrap supports
higher than 60% are indicated next to the nodes, while branch lengths are scaled according to the

number of nucleotide substitutions per site. The tree is midpoint rooted for clarity only.
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Technical Appendix Figure 2. Maximum Likelihood phylogenetic tree of the NA gene of the N5 subtype.
HPAI H5NS5 viruses collected in Italy from wild birds are marked in red. Bootstrap supports higher than
60% are indicated next to the nodes, while branch lengths are scaled according to the number of

nucleotide substitutions per site. The tree is midpoint rooted for clarity only.
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Technical Appendix Figure 3. Maximum Likelihood phylogenetic tree of the PB2 gene. HPAI

H5N8/H5N5 viruses were collected in Italy from wild (red) and domestic (blue) birds. Bootstrap supports
higher than 60% are indicated next to the nodes, while branch lengths are scaled according to the
number of nucleotide substitutions per site. The tree is midpoint rooted for clarity only.
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Technical Appendix Figure 4. Maximum Likelihood phylogenetic tree of the PB1 gene. HPAI
H5N8/H5NS5 viruses were collected in Italy from wild (red) and domestic (blue) birds. Bootstrap supports
higher than 60% are indicated next to the nodes, while branch lengths are scaled according to the

number of nucleotide substitutions per site. The tree is midpoint rooted for clarity only.
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Technical Appendix Figure 5. Maximum Likelihood phylogenetic tree of the PA gene. HPAI H5SN8/H5N5
viruses were collected in Italy from wild (red) and domestic (blue) birds. Bootstrap supports higher than
60% are indicated next to the nodes, while branch lengths are scaled according to the number of

nucleotide substitutions per site. The tree is midpoint rooted for clarity only.
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Technical Appendix Figure 6. Maximum Likelihood phylogenetic tree of the NP gene. HPAI HSN8/H5N5
viruses were collected in Italy from wild (red) and domestic (blue) birds. Bootstrap supports higher than
60% are indicated next to the nodes, while branch lengths are scaled according to the number of

nucleotide substitutions per site. The tree is midpoint rooted for clarity only.
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Technical Appendix Figure 8. Maximum Likelihood phylogenetic tree of the NS gene. HPAI HSN8/H5N5
viruses were collected in Italy from wild (red) and domestic (blue) birds. Bootstrap supports higher than
60% are indicated next to the nodes, while branch lengths are scaled according to the number of

nucleotide substitutions per site. The tree is midpoint rooted for clarity only.
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Technical Appendix Figure 9. Median-joining phylogenetic network of the HA gene sequences of the
2016 HPAI H5N8/H5NS5 viruses from Eurasia. Each unique sequence genotype is represented by a circle
sized relatively to its frequency in the dataset. Branches represent the shortest trees and are proportional
to the number of nucleotide mutations that separate each node. Median vectors are indicated as black
circles. The pink shading shows the H5N5 viruses.
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